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1 Introduction: elliptic curves and the j-invariant

David Hilbert once said that the theory of complex multiplication is the most beautiful part
not only of mathematics, but in all of science. Take that, biologists.

In this talk, I’ll assume you have some familiarity with elliptic curves. Specifically: they are
irreducible smooth projective curves of genus 1 with a marked point; they can be defined in P2

by y2 = x3 + ax+ b (with the marked point being at ∞; a somewhat more general equation is
needed in characteristic 2 or 3); they have a commutative group law; and over C they can be
written as C /Λ for Λ = Z+Z τ some lattice.

For now, let’s focus on elliptic curves over C. We can parametrize these in two ways. First, writ-
ing E = C /Λ, we can assume without loss of generality that Λ = Z+Zτ , with τ in the upper half
plane H. Replacing τ by τ + 1 doesn’t change the lattice, and replacing it by −1/τ only scales
the lattice, so both of these yield the same elliptic curve. So elliptic curves over C can in fact be
parametrized by H mod the action of the modular group Γ = 〈τ 7→ τ+1, τ 7→ −1/τ〉 ∼= SL2(Z).
A fundamental domain for this action consists of the region −1/2 < <(τ) < 1/2, |τ | > 1, along
with part of its boundary.

Another way to parametrize elliptic curves over C is by their j-invariants. The j-invariant
is a holomorphic function H → C which is Γ-invariant (i.e. a modular function of weight 0 and
level 1) and is bijective when restricted to a fundamental domain. An explicit definition is as
follows: for τ ∈ H, let Λ = Z + Zτ , and define:

g2 = 60
∑

06=λ∈Λ

λ−4; (1)

g3 = 140
∑

06=λ∈Λ

λ−6; (2)

j(τ) = 1728
g3

2

g3
2 − 27g2

3

. (3)

∗Notes for a talk given in Berkeley’s Student Heegner Point Seminar, supervised by Xinyi Yuan. Main
reference: Chao Li’s minor thesis, Endomorphism rings of elliptic curves and singular moduli.
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Alternatively, if we are given an elliptic curve defined by y2 = x3 + ax+ b, then its j-invariant
is 1728 4a3

4a3+27b2
.

Example 1.1. The elliptic curve E2 defined by y2 = x3 + x corresponds to (the Γ-orbit of)
τ = i. It has j-invariant j(i) = 1728.

Example 1.2. The elliptic curve E1 defined by y2 = x3 + 1 corresponds to (the Γ-orbit of)
τ = eiπ/3. It has j-invariant j(eiπ/3) = 0.

Example 1.3. The elliptic curve E3 defined by y2 = x3 − 2 has j-invariant 0. Since it has
the same j-invariant as E1, they must be isomorphic over C. (Indeed, if x, y are coordinates
for E1 and x′, y′ for E3, an isomorphism is given by (x′, y′) = ( 3

√
−2x,

√
−2y).) Note however

that E1 and E3 are not isomorphic over Q: for example, E1(Q) has rank 0 and Z/6Z torsion
(generated by (2, 3)), while E3(Q) has no torsion and rank 1 (generated by (3, 5)).

2 Complex multiplication

We’re interested in studying endomorphisms of elliptic curves. Since elliptic curves are group
varieties, endomorphisms can be not only composed, but also added and subtracted. It follows
that they form a (possibly non-commutative) ring End(E). This ring contains a naturally
embedded copy of Z, given by n 7→ (nth-power map), which makes sense because the group law
is commutative. It turns out that there are only three possibilities for the structure of End(E):

1. End(E) = Z;

2. End(E) = O, an order in an imaginary quadratic field K/Q; or

3. (only possible if char k 6= 0) End(E) = an order in a quaternion algebra over Q.

(By an order, we mean a subring that is also a full-rank sublattice; i.e. a subring that generates
the full ring as a Q-vector space.) The second case is what we call complex multiplication; the
third (which we will ignore in this talk) is known as the supersingular case. Let’s look at our
examples from earlier to identify their endomorphism rings.

Example 2.1. Recall that the curve y2 = x3 + x (over C) corresponds to the Γ-orbit of τ = i;
that is, its complex structure is that of C /Λ, where Λ = Z + Zi. To get an endomorphism of
this, we can just scale the complex plane by any α ∈ C with αΛ ⊂ Λ; namely any α ∈ Z[i].
So this curve does have complex multiplication by the order O = Z[i] ⊂ Q(i). We can also
interpret these endomorphisms via the Weierstrass equation: the endomorphism [i] corresponds
to the order-4 map (x, y) 7→ (−x, iy).

Example 2.2. The curve y2 = x3 +1 corresponds to τ = eiπ/3, so here we have Λ = Z+Zeiπ/3.
Once again, endomorphisms are given by scaling the complex plane by an α ∈ C with αΛ ⊂
Λ, and in this case we get End(E) = Z[ρ], where ρ = e2πi/3 is a cube root of unity. The
endomorphism [ρ] corresponds to the map (x, y) 7→ (ρx, y).
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In general, the endomorphisms of a complex elliptic curve E = C /Λ are precisely given by
{α ∈ C : αΛ ⊂ Λ}. One can check that if Λ = Z+Z τ , then Λ is preserved only by Z unless
τ belongs to some imaginary quadratic field K, and in this case it is preserved by some order
O ⊂ K. Note that O does not need to be the ring of integers: for example, if τ = 2i, then
O = Z[2i] ⊂ Q(i).1

Fix an imaginary quadratic field K and an order O in it. We want to study the set Ell(O) of
all elliptic curves E/C with End(E) ∼= O. We claim that this is in natural bijection with the
ideal class group Cl(O). Here we must be careful with what we mean by “ideal class group”,
as it does not quite agree with the usual definition for a Dedekind domain.

Definition 2.3. A fractional ideal a ⊂ K is proper if {β : βa ⊂ a} is exactly O. These form
a group under multiplication, and the ideal class group Cl(O) is defined to be the group I(O)
of proper fractional ideals modulo the subgroup P (O) of principal fractional ideals (which are
automatically proper).

Lemma 2.4. There is a natural bijection Ell(O) ∼= Cl(O).

Proof. (Sketch.) The elliptic curve E = C/Λ has End(E) = O if and only if {β : βΛ ⊂ Λ} = O,
which is true if and only if Λ is a proper fractional ideal of K. Two lattices Λ and Λ′ produce
the same elliptic curve if and only if Λ = αΛ′ for some α, which holds if and only if Λ and Λ′

are equivalent modulo principal fractional ideals.

Note that although Cl(O) is a slight generalization of the class group of a field, it is still
always finite. Its order is called the class number h(O).

Now for the crazy part. Let σ ∈ Gal(C /Q) be an arbitrary automorphism, and consider
the elliptic curve Eσ obtained by applying σ to all the coefficients defining E. The resulting
curve will have j-invariant σ(j(E)), and will have complex multiplication with respect to the
same O. But we know that Ell(O) is finite, so there are only finitely many isomorphism classes
of Eσ, and thus only finitely many j-invariants σ(j(E)). Thus j(E) is an algebraic number of
degree at most h(O). (!) Moreover, it can be shown that its degree is exactly h(O), and that
it is an algebraic integer.

3 Ring class fields

In this section, we’ll study the ideal class groups of orders in imaginary quadratic fields a little
more. Our goal will be to define the ring class field H/K, which shows up in the statement of
the First Main Theorem of complex multiplication.

Let K be an imaginary quadratic field of discriminant d. Then the ring of integers OK can be

written as Z[d+
√
d

2
]. (There was a bit of confusion about this last week. If K = Q(

√
n), then

we have d = n in the case n ≡ 1 (mod 4), and d = 4n otherwise. So if n 6≡ 1 (mod 4), then the

ring of integers is Z[4n+
√

4n
2

] = Z[
√
n].) All orders of K can be written as O = Z+fOK , where

1This corresponds to j(2i) = 663; such a curve is given by y2 = x3 − 11x + 14.
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f > 0 is called the conductor of O. In particular, the ring of integers itself is the maximal
order, all others being contained in it.

We now collect a few nitty-gritty results about ideals and ideal classes in these fields. The
proofs are not that hard, and will be omitted.

Lemma 3.1. Every ideal of O prime to f is proper, in the sense defined earlier. An ideal of
O is prime to f if and only if its norm is. Consequently, ideals prime to f are closed under
multiplication.

Lemma 3.2. Let I(O, f) denote the group of fractional ideals that is generated by ideals prime
to f ; this is a subgroup of I(O) by the previous lemma. Let P (O, f) denote the principal ones.
Then we have a commutative diagram

0 // P (O, f) //
� _

��

I(O, f) //
� _

��

Cl(O) // 0

0 // P (O) // I(O) // Cl(O) // 0

Lemma 3.3. There is a natural isomorphism I(OK , f) ∼= I(O, f) given by a 7→ a ∩ O in
the forward direction and a 7→ aOK in the reverse direction. This induces an isomorphism
I(OK , f)/PK,Z(f) ∼= I(O, f)/P (O, f), where Pk,Z(f) is the group of principal ideals of OK
whose generators α are congruent modulo fOK to some a ∈ Z prime to f .

By class field theory, this subgroup PK,Z(f) ⊂ I(OK , f) corresponds to a finite abelian
extension H/K with

Gal(H/K) ∼= I(OK , f)/PK,Z(f) ∼= I(O, f)/P (O, f) (4)
∼= I(O)/P (O) = Cl(O). (5)

We call this field H the ring class field of O. In the case O = OK , it is the Hilbert class field
of K, i.e. the maximal abelian unramified extension of K.

4 Main theorems of complex multiplication

Continuing with the notation of the previous section, we are now ready to state the First Main
Theorem of complex multiplication.

Theorem 4.1. (First Main Theorem of complex multiplication) If a is any proper fractional
ideal of O, then K(j(a)) is the ring class field of O. In particular, K(j(OK)) is the Hilbert
class field of K, and its degree over K is the class number h(K).

The First Main Theorem allows us to understand all unramified abelian extensions of an
imaginary quadratic field K: they are subfields of K(j(OK)). Going beyond this, we would like
to understand all abelian extensions without the unramified assumption. (This is something
that the Kronecker-Weber theorem does over Q: the maximal abelian extension of Q is just
Q(µ∞). But for a general number field, it is much more difficult.)
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In order to state the Second Main Theorem, we’ll need to refer to the Weber function h(P,E)—
not to be confused with the class number h(K). The Weber function is essentially an x-
coordinate function for points on E, normalized to be invariant under isomorphisms between
curves. We also need to refer to a generalization of the Hilbert class field, called the ray class
field of K with respect to an ideal a. This is the maximal abelian extension of K unramified at
primes not dividing a, and with restricted ramification at these primes. Note that every abelian
extension has only a finite amount of ramification, so every abelian extension lies in some ray
class field.

Theorem 4.2. (Second Main Theorem of complex multiplication) Let a be an ideal of OK, and
let E be an elliptic curve with complex multiplication by OK. Let E[a] denote the a-torsion of
E, i.e. the points of E killed by multiplication by a. Then K(j(E), h(E[a], E)) is the ray class
field of K with respect to a. It follows that the maximal abelian extension of K is the union of
these, namely K(j(E), h(Etor, E)).2

This theorem, proved by Kronecker, is still one of the few places where we can identify the
maximal abelian extension of a number field in any explicit way. Kronecker famously wrote
to Dedekind in 1880 that the “dear dream of his youth” (“Jugendtraum”) was to extend this
theory to describe the maximal abelian extension of an arbitrary number field. Doing so is
Hilbert’s 12th problem, which is still unsolved. The most general case that has been resolved
is the case of CM fields, which was done by Shimura.

2Question: Is this correct? Sources other than Chao Li tell me that you also need to adjoin roots of unity,
because the ray class fields with respect to a don’t allow ramification at ∞.
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